Chem. Ber. 113, 2200 - 2210 (1980)

Reaktivität von Metall-Metall-Bindungen

Dreikernkomplexe durch Spaltung von Fe-Mo- und Fe-W-Bindungen

Hans-Joachim Langenbach und Heinrich Vahrenkamp*

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 16. Oktober 1979

Bei arsenverbrückten Organometall-Zweikernkomplexen (1) mit Fe – Mo- und Fe – W-Bindungen läßt sich mit Organometall-dimethylarseniden (2) nur in einigen Fällen die einfache nucleophile Öffnung der Metall-Metall-Bindung erzielen. Dazu werden Umlagerungs- und Substitutionsreaktionen beobachtet, und die in jedem Fall entstehenden Dreikernkomplexe mit und ohne Metall-Metall-Bindung stehen z. T. mit den Ausgangskomplexen im Gleichgewicht. In einem Falle führt Umlagerung zu einer Ionenverbindung mit einem Fe – W-verknüpften Kation und dem Cp(CO)₃Cr-Anion.

Reactivity of Metal-Metal Bonds

Trinuclear Complexes by Cleavage of Fe - Mo and Fe - W Bonds

In arsenic-bridged dinuclear organometallic complexes (1) with Fe - Mo and Fe - W bonds only in a few cases the simple nucleophilic cleavage of the metal-metal bonds by organometal dimethylarsenides (2) can be achieved. In addition rearrangement and substitution reactions are observed, and the always resulting trinuclear complexes with and without metal-metal bonds are partly in equilibrium with the starting complexes. In one case rearrangement leads to an ionic compound with a Fe - W bonded cation and the $Cp(CO)_3Cr$ anion.

In der vorstehenden Arbeit¹⁾ haben wir beschrieben, daß sich arsenverbrückte Bindungen zwischen Metallen der ersten Übergangsreihe mit Organometall-dimethylarseniden gezielt nucleophil öffnen lassen, wobei Dreikernkomplexe mit kettenförmiger Anordnung von Metall- und Brückenatomen entstehen. Da sich die Organometalldimethylarsenide nicht nur zur Extension^{2,3)}, sondern auch zur Aggregation von Mehrkernkomplexen unter Clusterbildung^{4,5)} eignen, waren wir bemüht, auch für letztere Reaktion Beispiele zu finden, die von Zweikernkomplexen ausgehen. Wir wählten als Ausgangsverbindungen dazu die Komplexe **1a** und **b**. Von diesen ist bekannt⁶⁾, daß ihre Metall-Metall-Bindungen weniger leicht gespalten werden, da die schweren Übergangsmetalle Molybdän und Wolfram daran beteiligt sind, und daß neben der Fe – M'-Bindungsspaltung mit einfachen Nucleophilen auch Substitutions- und Umlagerungsreaktionen eintreten. Das Ziel der vorliegenden Arbeit war es, entsprechende Reaktionen beim Einsatz der metallorganischen Nucleophile **2**^{7,8)} aufzufinden und deren Verlauf und synthetische Nutzbarkeit zu überprüfen.

Umsetzungen

Im Gegensatz zu den vorstehend¹⁾ beschriebenen Zweikernkomplexen waren **1a** und **b** gegenüber den Organometall-Dimethylarseniden **2** wesentlich reaktionsträger. Und wie erwartet lieferten sie nicht einen, sondern vier verschiedene Produkttypen. Drei davon resultierten aus Reaktionsverläufen, die ähnlich schon mit den einfachen Nucleophilen beobachtet worden waren. Und in einem Fall trat in unerwarteter Form eine Aggregationsreaktion ein.

Ausgehend vom Fe – Mo-Komplex 1a waren alle acht Produkte 3a - h zu erhalten, die aus der "normalen" Addition der Nucleophile 2 unter Öffnung der Metall-Metall-Bindung resultieren. Deren Konstitution ohne Fe – Mo-Bindung geht außer aus ihren Spektren (s. u.) auch daraus hervor, daß sie unter milden Bedingungen inert gegen das starke Nucleophil PMe₃ sind, das sonst relativ leicht die Fe – Mo-Bindung öffnet⁶). Neben den Komplexen 3 und z. T. aus ihnen entstanden aber auch die Verbindungen 4b, c, d, g und h. Drei der acht denkbaren Komplexe 4 wurden nicht erhalten, und zwar diejenigen, die mit den stärksten metallorganischen Lewis-Basen 2a, e und f entstehen würden. Bei der Bildung von 4 haben die Nucleophile 2 nicht die Metall-Metall-Bindung geöffnet, sondern am Eisenatom einen CO-Liganden substituiert.

Ausgehend vom Fe – W-Komplex 1b war keine zu 3 analoge Verbindung zu erhalten. Aber die zu 4 analogen Dreikernkomplexe 5 waren mit einer Ausnahme zugänglich. Zusätzlich entstanden aus 1b und den Lewis-Basen 2 sechs Verbindungen des neuen Typs 6, der bei den Fe – Mo-Verbindungen nicht beobachtet wurde. Zur Bildung der Komplexe 6 muß zunächst Öffnung der Fe – W-Bindung und dann Umlagerung unter Wanderung des "Liganden" 2 vom Wolfram- zum Eisenatom eingetreten sein. Das Fehlen der Metall-Metall-Bindung in 6 wurde chemisch wieder durch die Inertheit gegen PMe₃ belegt. Die Fe – Mo-Bindung in 4 und die Fe – W-Bindung in 5 wurden dagegen durch Trimethylphosphan geöffnet, wobei gleichzeitig die am Eisen gebundenen "Liganden" 2 durch PMe₃ ersetzt wurden. Aus 4b, c und d resultierte so 7a, und aus 5c, d, g und h entstand 7b. Beide Verbindungen 7 waren schon bei den Reaktionen von 1a und b mit einfachen Nucleophilen erhalten worden⁶⁾.

Einen Sonderfall stellte die Umsetzung des Fe-W-Komplexes 1b mit dem Chromarsenid 2b dar. Sie führte nur ohne Lösungsmitel zu 6b. Beim Versuch, in Lösung einen der Komplexe 5 oder 6 zu erhalten, bildete sich stattdessen die neuartige Ionenverbindung 8, deren Schwerlöslichkeit in unpolaren Lösungsmitteln sie deutlich von den Dreikernkomplexen abhebt. 8 enthält zwar auch drei Metallatome, aber nur zwei davon in einem Molekül. In diesem Kation-Molekül liegt im Gegensatz zu dem einfachsten erwarteten Produkt vom Typ 3 oder zum alternativ zu erhaltenden Produkt 6b wieder eine Metall-Metall-Bindung vor. Naturgemäß geht bei den Komplexen 5 und 8 das Auftreten von Fe – W-Bindungen mit der Freisetzung von CO während der Reaktion einher.

Die gleichzeitige oder sukzessive Bildung von jeweils zwei Komplextypen (3 und 4 bzw. 5 und 6) aus 1a und b veranlaßte uns zu einer Verfolgung der Reaktionsabläufe. Dabei wurde festgestellt, daß die Metall-Metall-verknüpften Produkte 4 und 5 mit den Ausgangsverbindungen im Gleichgewicht stehen: sie bildeten sich im geschlossenen Kolben, d. h. unter gewissem CO-Druck, in kleinerer Ausbeute als im offenen Kolben, d. h. unter N₂-Spülung; und durch Einleiten von CO wurden 4 (bzw. 5) a – d rasch wieder in die Ausgangskomplexe zurückverwandelt. Die Komplexe 4 und 5 mit den stärker basischen "Liganden" 2e - h erlitten nur sehr langsam diese Rückumwandlung. Das Ausbeuteverhältnis 3/4 bzw. 5/6 hing somit deshalb vom CO-Partialdruck über den Reaktionslösungen ab, weil die Gegenwart von CO die Bildung von 4 und 5 hemmt.

Die Komplexe 4 und 5 scheinen die primären Reaktionsprodukte zu sein. NMR-spektroskopische Beobachtung zeigte, daß aus 1a und 2c zuerst 4c entstand, dessen Konzentration rasch bis zum Gleichgewichtswert anstieg. Erst anschließend trat die Bildung von 3c ein, die aber keiner Gleichgewichts-Begrenzung unterliegt. Gleiches wurde für die Umsetzung von 1a mit 2b beobachtet, bei der nacheinander 4b und 3b auftraten. Außer durch Aufrechterhaltung eines kleinen CO-Drucks konnte so durch längere Reaktionszeiten die Ausbeute von 3 und 6 erhöht werden. Dazu kam als Begünstigung die geringere Löslichkeit von 3 und 6 im Vergleich zu 4 und 5.

Daß dennoch die Komplexe 4 und 5 mit Metall-Metall-Bindung die bevorzugten Reaktionsprodukte sind, ging daraus hervor, daß sie im offenen System aus den Komplexen 3 und 6 entstehen: Wurde durch einen Stickstoffstrom dafür gesorgt, daß kein CO über den Lösungen vorhanden war, dann wandelten sich durch leichtes Erwärmen 3c bzw. 3g vollständig in 4c bzw. 4g, 3d zu 80% in 4d und 6h vollständig in 5h um.

Konstitutionszuordnungen

Die charakteristischen Gemeinsamkeiten bzw. Unterschiede in den Spektren legten fest, daß die neuen Dreikernkomplexe (außer 8) zu drei Strukturtypen gehören, wobei 4 und 5 vom gleichen Typ sind. FD-Massenspektren, die bei 3d, 4d, 6b und 6c jeweils das Molekül-Ion zeigten, bestätigten die Bruttozusammensetzungen. Damit war nach der 18-Elektronen-Regel zu fordern, daß bei 3 und 6 keine und bei 4 und 5 eine Metall-Metall-Bindung vorliegt. Daß dies eine Fe – Mo- bzw. Fe – W-Bindung ist, war naheliegend, da die Bindungen zu diesen Schweratomen besonders stabil sind⁹. Es entspricht auch der bekannten Chemie von 1a und b⁶) und ist mit den Spektren (s. u.) in Einklang. Damit war nur noch festzulegen, an welcher Stelle die "Liganden" 2 an die Fe – As – M' (M' = Mo bzw. W)-Gerüste von 3-6 angebunden sind.

Dies geschah im wesentlichen mit Hilfe der NMR-Spektren (Tab. 1). Darin sind die C_5H_5 -Resonanzen durch ihre typische Lage gut zuzuordnen, was durch die jeweilige Aufspaltung bei Nachbarschaft von PMe₃-Liganden noch erleichtert wird. Von den

Komplex	м'-С ₅ Н5 б	M-CsHs &∕J	Fe-AsMe2-M' Q	AsMe₂-M á∕J	PMe₃ â/J
<u>3a</u>	4,90	4.40	1,97	1.40	-
<u>b</u>	4.93	4.07	1.92	1.50	-
<u>c</u>	4.91	4.55	1.92	1.51	-
đ	4.91	4.57	1.91	1.58	-
ē	4.95	4.04/1.7	2.03	1.35	0.75/9.2
			2.02	1.30	
f	5.20	4.14/2.5	2.03	1.76	0.73/9.4
đ	5.16	4.62/1.6	2.04	1.80	0.78/9.5
þ	5.15	4.63/1.5	2.03	1,91	0.87/9.4
<u>4</u> <u></u>	4.91	4.22	1.63	1.71	-
 <u>c</u>	4.94	4.73	1.64	1.74	-
₫	4.94	4.73	1.64	1.77	-
g	5.07	4.79/1.7	1.76	1.95	0.81/9.5
Ь	5.05	4.80/1.6	1.76	2.02	0.96/9.6
5 <u>a</u>	5.01	4.25	1.66	1.70	-
ç	4.97	4.75	1.67	1.73	-
d	4.95	4.74	1.67	1.80	-
_ _	5.06	4.28/1.8	1.76	1.64/0.4	1.01/9.6
-			1.74	1.59/0.4	
f	5.11	4.37/2.4	1.80	1.88	0.84/9.4
9	5.05	4.77/1.5	1.77	1.92	0.85/9.6
b	5.07	4.80/1.7	1.79	2.03	0.96/9.7
<u>Śa</u>	4.98	4.42	2.04	1.85	-
Þ	5.00	4.46	2.02	1.96	-
- 2	4.91	4.88	2.00	1.94	-
f	5.06	4.50/2.4	2.10	2.11/0.3	0.81/9.0
- g	5.05	4.97/1.6	2.10	2.17	0.82/9.3
- b	5.03	4.99/1.6	2.11	2.27	Q.94/9.5
8 ^{a)}	6.15	4.35	2.21		
-	-		2.04		

Tab. 1. NMR-Daten der neuen Dreikernkomplexe (Benzol, int. TMS, δ-Werte, J in Hz)

a) In Aceton-de.

AsMe₂-Resonanzen ist für jeden Komplextyp diejenige für die Fe – As – M'-Einheit relativ lagekonstant, während diejenige für die Me₂As – M-Einheit (2a - h) variiert. Dabei spricht die Hochfeldlage des Fe – AsMe₂ – M'-Signals bei 4 und 5 für und ihre Tieffeldlage bei 3 und 6 gegen die Fe – M'-Bindung.

Komplex	н		Fe(CO) _n	- Gruppe		H' (C	0) _n - Grupp)e		M - Gruppe	
3a	FeCp(C0)2	2027Sch	1934m	1908sst	1896sst	1923st	1829st		2019st	1976st	
ь	CrCp(CO)3	2024m	1927m	1915Sch	1906sstb	19215ch	1839m		2007m	1952m	1906sstb
<u>_</u>	MoCp(CO) ₃	2019m	1927\$ch	1908sst	1901Sch	1920sst	1829m		2033m	1963s	1920sst
ā	WCp(CO)3	2020st	1928m	1902sstb		1921m	1838m		2020st	1949m	1916m
= e	FeCpC0PMe ₃	2017m	1937Sch	1905sst	1893sst	1923Sch	1822m		1945Sch		
f	CrCp(CO) ₂ PMe ₃	2.014m	1945Sch	1907st	1893/1887st	1923mb	1831st		1942m	1848sst	
9	MoCp(CO)₂PMe₃	2019m	1942Sch	1907sstb	1895stb	1925st	1836sstb		1936st	1848stb	
5	WCp(CO) ₂ PMe ₃	2017s	1935Sch	1903st	1892m	1922m	1832sst		1925Sch	1839Sch	
45	CrCp(CO) ₃	1998st	1948m	1931sst		1898sst	1819st		2014m	1936Sch	1908sst
<u>c</u>	MoCp(CO) ₃	1999m	1952m	1932sst		1898sst	1820st		2033st	1940\$ch	1910sst
₫	WCp(CO)3	1999m	1946stb	1930sst		1896sst	1818st		2021st	1930sst	19035ch
9	MoCp(CO) ₂ PHe ₃	1997s	1942Sch	1920sst		1882m	1875m	1806m	1933st	1851st	
b.	WCp(CO) ₂ PMe ₃	1999s	19375ch	1921 sst		1869m	1797st		1931sst	1838sstb	
5a	FeCp(CO) ₂	1998s	1938m	1916sst		1892stb	1815st		2026st	1976m	
<u>c</u>	моСр(СО) _э	2000s	1948m	1930sstb		1889st	1806m		2022m	1935Sch	1906st
d	WCp(CO)3	19995	1944m	1927sst		1890sst	1807st		2017m	1930\$ch	1899Sch
_ _	FeCpCOPMe ₃	201655	1935st	1913sst		1882sst	1807st		1969s		
£	CrCp(CO)_PMe_3	1996s	1933Sch	1922sst		1877m	1870m	1797m	1922sst	1847st	
9	моСр(СО)_РМез	2001s	1940st	1929sst		1864st	1790m		1929sst	1851sst	
b	WCp(CO)_2PHe_3	1999s	1938st	1929sst		1862m	1789m		1921sst	1837sstb	
<u>6a</u>	FeCp(CO)2	1933st	1849mb	1827st		2002sst	1925st	1910stb	2014sst	1968stb	
Þ.	CrCp(C0) 3	1938mb	1842mb	1836mb		2002st	1927mb	1910sstb	2011st	1947mb	1910sst
ç	носр(СО) з	1939Sch	1850m	1328sst		2005sst	1930Sch	1915Sch	2027m	1953 s t	1922sstb
£	CrCp(CO) ₂ PMe ₃	1938Sch	1836st	1827m		2008m	1925m	1913st	1933st	1852 sstb	
9	MoCp(CO) ₂ PMe ₃	1938Sch	1836sst	1823st		2005m	1923m	1907st	1933stb	1851sstb	
b	WCp(CO) ₂ PMe ₃	1936Sch	1836sst	1817m		2003s	1926st	1912st	1917st	1836sst	
8	CrCp(CO)3	2045sst	2008st	1978sst	1960Sch	2045sst	1982st		1898m	1765Sch	1758sstb

Tab. 2. CO-Valenzschwingungen der neuen Dreikernkomplexe (in KBr, cm⁻¹)

Die Festlegung auf die Strukturtypen 3-6 geschah hauptsächlich aufgrund der Erfahrungen an den einfachen Derivaten von 1a und b⁶⁾ und den aus 2a - h zugänglichen Zweikernkomplexen¹⁰⁾. So ist noch kein Derivat von 1a und b bekannt, in dem nur am Mo- bzw. W-Atom eine CO-Gruppe substituiert ist. 4 und 5 entsprechen aber den bekannten Derivaten, die durch Substitution am Fe-Atom entstehen, und auch ihre NMR-Parameter (Lage des Fe-AsMe₂-M'-Signals, Verschiebung des AsMe₂-M-Signals gegenüber dem der freien AsMe₂-M-Einheit) sind mit dieser Zuordnung zu vereinbaren. Die Unterscheidung zwischen 3 und 6 beruht darauf, daß bei Komplexen mit einem L-Fe-As-M'-Gerüst das Fe-AsMe₂-M'-Signal und das L(hier = AsMe₂-M)-Signal tiefer liegen als bei Komplexen mit einem Fe-As-M'-L-Gerüst. Demnach gehören die Komplexe 3 zur Fe-As-Mo-L- und die Komplexe 6 zur L-Fe-As-W-Struktur. Eine Besonderheit stellen die NMR-Spektren von 3e und 5e dar, die die Chiralität am äußeren Eisenatom durch jeweils zwei Signale für beide AsMe₂-Gruppen anzeigen.

Das NMR-Spektrum von **8** zeigt das durch die positive Ladung sehr tiefliegende Signal der C₅H₅W-Einheit und relativ hoch das Signal des C₅H₅Cr(CO)₃-Anions. Zwei Signale für die AsMe₂-Brücken deuten darauf hin, daß das FeAs₂W-Viereck entlang der Fe – W-Bindung gefaltet ist, wie es auch bei (CO)₄Cr(μ -AsMe₂)₂Fe(CO)₃¹¹ und

2205

 $CpCo(\mu-PPh_2)_2Fe(CO)_3^{12})$ der Fall ist. Das Anion von **8** war durch Vergleich leicht spektroskopisch zu identifizieren. Das stärkste Indiz für die Formulierung von **8** ist sein FD-Massenspektrum, das die Molmassen des Kations und des Anions registrierte.

Die IR-Spektren der Dreikernkomplexe (Tab. 2) sind bandenreich und hätten allein keine Konstitutionszuordnungen gestattet. Sie lassen aber die Verwandtschaft innerhalb der Verbindungstypen erkennen. Bestimmte typische Atomgruppierungen $(M'(CO)_2 \text{ in 4 und 5}, M(CO)_2 \text{ in den Verbindungen } \mathbf{f} - \mathbf{h}, Fe(CO)_3 \text{ in 6})$ treten durch ihre Absorptionsmuster hervor. Nach der Festlegung der Konstitutionen konnten die beobachteten Banden weitgehend den einzelnen Metallcarbonyl-Bausteinen zugeordnet werden, wobei auf Konsistenz geachtet wurde und Vergleiche mit geeigneten Analogsystemen^{6,10,13)} zu Hilfe genommen wurden. Bei **8** waren nur die Banden des Anions sicher zuzuordnen, während beim Kation kaum geeignetes Vergleichsmaterial vorliegt.

Diskussion

Die 26 neuen Dreikernkomplexe 3-6 ergänzen die Serie der vorstehend¹⁾ behandelten Komplexe um neue Element-Kombinationen, wobei mit 4 bzw. 5 sowie 6 auch zwei neue Strukturtypen dazukommen. Aus den Umsetzungen von 1a und b mit einfachen Nucleophilen waren allerdings die hier aufgefundenen (Fe-As-M')-L-Verknüpfungen (M' = Mo, W) schon bekannt⁶⁾. Die Begünstigung von 4 bzw. 5 belegt, daß die Fe-Mo- und Fe-W-Bindungen gegenüber Nucleophilen inerter sind als die Fe-M-Bindungen mit M aus der ersten Übergangsreihe.

Die Bildung bzw. Nichtbildung einzelner Komplexe 3-6 entspricht einem komplizierten Wechselspiel von Gleichgewichts- und Folgereaktionen, das zudem durch unterschiedliche Reaktionsgeschwindigkeiten und Löslichkeiten beeinflußt wird. So sind in den Reaktionssystemen 1a/3/4 und 1b/5/6 durch Wahl der Reaktionsbedingungen die Produkte 3 bzw. 6 oder 4 bzw. 5 zu begünstigen, und die Umwandlungen $3 \neq 4$ und $5 \neq 6$ sind in beiden Richtungen zu verwirklichen. Es gibt jedoch kein einzelnes Argument, das die Bildungsbedingungen aller dieser Dreikernkomplexe erfaßt.

Von Bedeutung scheint zu sein, daß in den Ausgangskomplexen 1 eine Donor-Akzeptor-Fe \rightarrow Mo- bzw. Fe \rightarrow W-Bindung formuliert werden kann¹⁴). Ihre hier beschriebene Spaltung entspricht dann der nucleophilen Substitution des Eisens vom Molybdän bzw. Wolfram. Die Stärke der Fe-Mo-bzw. Fe-W-Bindung läßt sich so formal mit der Donorkraft der Fe(CO)₄-Einheit umschreiben. Im Falle der von 1a abgeleiteten Dreikernkomplexe ist nun die nucleophile Substitution der Fe(CO)₄-Einheit, d. h. die Addition der metallorganischen Lewis-Base am Molybdän, noch möglich (Komplexe 3). Sie konkurriert aber mit der nucleophilen Substitution einer CO-Gruppe vom Eisen (Komplexe 4). Mit den stärksten Nucleophilen 2a, e und f dominiert eindeutig die erstere Reaktion, mit den schwächeren Nucleophilen gewinnt die letztere an Bedeutung. Bei der noch stabileren Fe – W-Bindung in 1b ist die ausschließliche nucleophile Öffnung (zu 3 analoge Komplexe) unmöglich, während die CO-Substitution (Komplexe 5) mit einer Ausnahme realisiert ist. Die Bildung der Komplexe 6 ist mit dieser Argumentation nicht zu erfassen, wohl aber die zusätzliche Stabilisierung, die 4 und 5 dadurch erfahren, daß in ihnen die Donorkraft des Eisens durch dessen Basensubstitution noch verstärkt ist.

Bei der Bildung der Ionenverbindung 8 liegt die günstigste Elementkombination für eben diese Reaktion vor. Denn es kann sich bei der Aggregation des $FeAs_2W$ -Gebildes die hier stärkste Metall-Metall-Bindung (Fe – W) bilden, während die Organo-Chrom-Baueinheit, die am wenigsten zu der Stöchiometrie CpML₄ neigt¹⁵⁾, in der Form CpML₃ aus dem Molekülverband entlassen wird. Während 8 hier ein Sonderfall ist, sollte es durch gezielte Reaktionen möglich sein, vergleichbare Hetero-Zweikernkomplexe zu gewinnen¹⁶⁾.

Die Komplexe 6 lassen sich als Derivate von $Fe(CO)_5$ auffassen, bei dem beide axialen CO-Gruppen durch Organometall-dimethylarsenide substituiert sind. Solche Dreikernkomplexe mit zwei gleichen "Liganden" $Me_2As - M$ sind aus $Fe_3(CO)_{12}$ zugänglich¹⁷⁾. Erstaunlicherweise wird aus 1b der einzige hier mögliche symmetrische Vertreter 6d nicht gebildet. Und umgekehrt fällt auf, daß die Isomeren 3d und 6c jeweils nur auf einem Wege zugänglich und nicht ineinander umwandelbar sind. Das Gleiche gilt für die Isomeren 4d und 5c. Und schließlich haben 4c und 5d die Möglichkeit, fluktuierende Moleküle zu sein. Denn bei diesen beiden Verbindungen könnten unter Erhalt von Stöchiometrie und Struktur CO-Gruppen und Metall-Metall-Bindungen die Plätze tauschen. Bei Raumtemperatur ist ihren NMR-Spektren diese Eigenschaft jedoch nicht zu entnehmen.

Die Dreikernkomplexe 4 und 5 enthalten noch die Metall-Metall-Bindung, deren Vorhandensein Anlaß zu dieser Untersuchung war. Mit geeigneten Nucleophilen sollten sie deshalb weitere Aufbaureaktionen ermöglichen. Die Fortführung der beschriebenen Spaltungsreaktionen zur Bildung von Vierkernkomplexen und höheren Oligomeren liegt auf der Hand.

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt. Die sorgfältig aufgenommenen Massenspektren von Herrn Dr. K. Steinbach, Marburg, ermöglichten die Identifizierung der Substanzen.

Experimenteller Teil

Die allgemeinen Arbeitsmethoden waren dieselben wie in der vorstehenden Arbeit¹⁾.

Zur Darstellung der Dreikernkomplexe werden soweit wie möglich Ansätze beschrieben, die die Isolierung beider zusammengehörender Komplexe 3 und 4 bzw. 5 und 6 gestatteten. Normalerweise wurde in geschlossenen Kolben oder NMR-Röhrchen umgesetzt, nur die Umwandlungen $3 \rightarrow 4$ und $6 \rightarrow 5$ wurden unter strömendem Stickstoff ausgeführt. Zur Aufarbeitung der in Tab. 3 quantitativ beschriebenen Reaktionsansätze wurden folgende Varianten (= Var.) angewendet:

A: Die Reaktionslösung wurde i. Vak. auf 10% ihres Volumens eingeengt und nach Zugabe von 5-9 Teilen Hexan der Kristallisation überlassen. Nach Filtrieren wurde der Niederschlag mit wenig kaltem Hexan gewaschen und getrocknet. Im Bedarfsfalle wurde erneut aus Benzol/Hexan umkristallisiert.

B: Das Produkt fiel im Reaktionsverlauf teilweise aus. Nach Einengen i. Vak. auf ein Viertel des Volumens wurde filtriert und mehrmals mit wenig kaltem Hexan gewaschen. Bei Bedarf wurde aus Benzol/Hexan umkristallisiert.

C: Nach Entfernen des Lösungsmittels i. Vak. wurde der Rückstand mit möglichst wenig Benzol extrahiert, der Extrakt mit dem drei- bis fünffachen Volumen Hexan versetzt und der Kristallisation überlassen. Das abfiltrierte Produkt wurde mit wenig Hexan gewaschen.

Komplex	Ausg Nr.	angsverb g	indung mmol	Reagens ^a Nr.) mmol	Lösungsmit	tel ^{b)} ml	Reaktions Temp. C	Zeit	Var.	Ausbei g	ute %
<u>3a</u>	<u>1a</u>	0.23	0,48	2a	0.55	B/H 5:1	10	25	6d	в	0.14	38
ē	**	0.36	0.73	Þ	0.80	8/H 1:2	15	50	5d	D	0.06	10
Ē	**	0.23	0.48	Ē	0.50	B/H 1:1	10	25	30d	E	0.06	15
₫		0.35	0.72	đ	1.00	B/H 1:2	20	25	2 d	D	0.07	10
ē		0.23	0.48	ē	0.50	B/H 5:1	10	25	6d	в	0.33	84
f		0.23	0.48	f	0.75	B/H 1:5	12	25	17h	с	0.15	37
<u>9</u>		0.13	0.27	ā	0.35	B/H 1:1	7	25	14d	в	0.14	58
þ		0.27	0.56	þ	0.60	Benzol	7	25	7d	А	0.14	26
4b		0.36	0.73	Þ	0.80	B/H 1:2	15	50	5d	D	0.19	23
ç		0.23	0.48	<u>c</u>	0.55	B/H 1:1	10	25	30d	в	0.14	37
<u>c</u>	<u>3c</u>	0.03	0.04	-	-	Benzol	1	60	4d	F	-	80
₫	<u>1a</u>	0.35	0.72	<u>d</u>	1.00	B/H 1:2	20	25	2d	D	0.15	22
đ	<u>3d</u>	0.03	0.03	-	-	Benzol	1	30	1 h	F	-	80
9	39	0.15	0.17	-	-	B/H 1:1	15	25	10d	G	0.06	41
<u>þ</u>	<u>1a</u>	0.27	0.56	h	0.65	Benzol	7	25	7d	E	0.10	18
<u>5</u> a	15	0.29	0.50	_ 	0.60	Benzol	10	25	3d	н	0.13	31
<u>5a</u>		0.10	0.17	a	0.30	Hexan	40	25	5d	в	0.09	64
<u>c</u>		0.34	0.59	<u>c</u>	1.40	B/H 1:2	17	25	12h	А	0.12	23
d		0.19	0.33	đ	0.45	B/H 1:1	11	25	7d	в	0.22	67
e		0.58	1.00	e	1.05	B/H 2:1	30	25	2 d	А	0.39	43
f	**	0.43	0.74	f	1.00	B/H 1:2	25	50	4h	8	0.17	25
9		0.33	0.57	а –	0.70	B/H 1:4	15	25	1d	в	0.20	37
h	u.	0.29	0.50	₽ h	0.55	Benzol	5	25	50	А	0.29	56
<u>b</u>	<u>6h</u>	0.02	0.02	-	-	Benzol	1	30	36h	F	-	70
<u>7</u> a	45	0.03	0.04	Р (СНэ) э	0.15	Benzol	1	30	2h	F	-	80
 7a	40	0.03	0.04	P(CH ₃) ₃	0.25	Benzol	1	30	2h	F	-	80
 7a	4d	0.08	0.09	P(CH3)3	0.40	Benzol	2	30	3h	А	0.03	55
== Z⊵	<u>5</u> c	0.03	0.03	P (CH ₃) 3	0.25	Benzol	1	30	2 h	F	-	70
<u>7</u> b	50	0.03	0.03	Р(СН _Э)э	0.10	Benzol	1	30	3h	F	-	80
<u>7</u> b	 5g	0.03	0.03	Р(СН ₃)з	0.15	Benzol	1	30	7d	F	-	80
Z₽	5 <u>b</u>	0.03	0.03	Р (СН ₃) з	0.15	Benzol	1	30	1 0d	F	-	90
<u>6a</u>	<u>1</u> b	0.29	0.50	<u>2a</u>	0.60	Benzol	10	25	3d	н	0.08	19
<u>b</u>	11	0.58	1.00	<u>_</u>	1.10	-	-	25	40h	с	0.59	67
۔ د		0.34	0.59	_ _	1.40	B/H 1:2	17	25	12h	E	0.16	Z9
<u>f</u>	0	0.58	1.00	<u>_</u>	1.25	B/H 1:2	27	25	3d	А	0.49	53
≓ g		0.33	0.57	g	0.70	B/H 1:4	15	25	8d	E	0.11	20
ے b		0.29	0.50	_ Ь	0.55	Benzol	5	25	14d	E	0.06	11
8		0.29	0.50	₽	0.55	B/H 2:1	15	25	2 d	В	0.32	75

Tab. 3. Darstellung und Reaktionen der Dreikernkomplexe

a) eingesetzt in Form einer 1.0 M-Lösung in Benzol (außer bei <u>6b</u>).

b) B/H = Benzol/Hexan im angegebenen Mischungsverhältnis.

D: Im Verlauf der Reaktion kristallisierten zwei Verbindungen nebeneinander aus (3b und 4b bzw. 3d und 4d). Nach Dekantieren der Mutterlauge und Waschen mit kaltem Hexan erfolgte deren Trennung durch mechanische Auslese.

E: Die nach der Aufarbeitung des jeweils korrespondierenden Komplexes (der zuerst genannte bei 4c/3c, 3h/4h, 5c/6c, 5g/6g, 5h/6h) verbleibenden Reaktions- und Waschlösungen wurden vereinigt und i. Vak. zur Trockne eingeengt. Nach Extraktion mit möglichst wenig Benzol und Zugabe der vierfachen Menge Hexan wurde mehrere Tage im Kühlschrank aufbewahrt. Dabei

	Tab.	4. Charaktei	risierung der	Komplexe 3				
Komplex	Dicarbonyl(cyclopentadienyl)bis-µ- (dimethylarsenido)[carbonyleisen]molydän	Farbe	Schmp. (Sc)	Summenformel (Molmasse)		C Ar	alyse H	Fe
ē	dicarbonyl (cyclopentadienyl)eisen	orangerot	160 (Zers)	C22H22A52Fe2M008 (771.9)	Ber. Gef.	34.23 34.46	2.87 2.83	14.47 14.03
	tricarbonyl (cyclopentadienyl) chrom	rot	152-154 (Zers)	C23H22A52CrFeMo0g (796.1)	Ber. Gef.	34.70 34.31	2.79 2.72	7.02
30	tricarbonyl(cyclopentadienyl) molybdän	orange- gelb	177-178 (Zers)	C23H22A52FeM0209 (840.0)	Ber. Gef.	32.89 33.09	2.64 2.74	6.65 7.05
<u>3d</u>	tricarbonyl(cyclopentadienyl) wolfram	weinrot	170-173 (Zers)	C ₂₃ H22As2FeMo0 ₆ W (927.9)	Ber. Gef.	29.77 29.70	2.39 2.26	6.01 6.48
3e	carbonyl (cyclopentadienyl) (tri- methylphosphan)eisen	rot	129-131	C24H31As2Fe2M007P (820.0)	Ber. Gef.	35.16 34.68	3,81 3.83	13.62 13.17
<u>3f</u>	dicarbonyl(cyclopentadienyl) (trimethylphosphan)chrom	rot	178-179 (Zers)	C ₂₅ H ₃₁ As ₂ CrFeMoO ₆ P (844.1)	Ber. Gef.	35.58 35.73	3.70 3.77	6.62 6.34
39	dicarbonyl (cyclopentadienyl) (trimethylphosphan)molybdän	orangerot	185-188	C ₂₅ H ₃₁ AszFeMo20 ₆ P (888.1)	Ber. Gef.	33.81 33.55	3.52	6.29 6.41
4	dicarbonyl(cyclopentadienyl) (trimethylphosphan)wolfram	orangerot	189-192 (Zers)	CasHanAsaFeMoOgPW (976.0)	Ber. Gef.	30.77 30.62	3.20	5.72 5.93
	Tab.	5. Charakte	risierung der	Komplexe 4				
Komplex	Tricarbonyl (dicarbonyl cyclopenta- dienylmolybdän) bisi-(dimethylar- senido)[]ef-Mo)	Farbe	Schmp. (^O C)	Summenforme) (Molmasse)		Anë	lyse H	e L
- 	tricarbonyl (cyclopentadienyl) chrom	schwarz- braun	160-162 (Zers)	Caz Haz Asa Cr FeMo0a (768.0)	Ber. Gef.	34.40 34.10	2.89 3.02	7.27
	tricarbony!(cyclopentadienyl) molybdän	dunkelrot	168-171 (Zers)	C ₂₂ H ₂₂ As ₂ FeMo ₂ 0 ₈ (812.0)	Ber. Gef.	32.54 32.83	2.73 2.75	6.87 6.83
P 1	tricarbonyl (cyclopen tadienyl) wolfram	schwarz- braun	195	C22 H22 A52 FeMoOB W (899.9)	Ber. Gef.	29.36 29.86	2.46 2.31	6.21 6.34
57	dicarbonyl (cyclopen tadienyl) (trimethylphosphan) molybdän	gelb- braun	174-176	C24H31As2FeMo207P (860.1)	Ber. Gef.	33.52 33.26	3.63 3.54	6.49 6.24
4 <u>1</u>	dicarbonyi (cyclopentadienyl) (trimethyiphosphan)woifram	rotbraun	175-178 (Zers)	С24.Нз1А52 FeMo07PW (948.0)	8er. Gef.	30.41 30.89	3.30 3.32	5.89

kristallisierten die oben als zweite genannten Verbindungen aus. Sie wurden noch einmal aus Benzol/Hexan umkristallisiert.

F: Die Reaktion wurde nur NMR-spektroskopisch verfolgt, die Ausbeute ist geschätzt.

G: Die nach Abtrennung vom ausgefallenen 3g verbleibende Lösung wurde zur Trockne eingeengt und der verbleibende Rückstand aus wenig Benzol/Hexan umkristallisiert.

H: Bei der Aufarbeitung nach A wurde ein Produktgemisch erhalten. Dieses wurde über eine $2 \text{ cm} \times 50 \text{ cm-Kieselgel-Säule}$ mit Benzol chromatographiert. Die erste, rote Fraktion ergab

H.-J. Langenbach und H. Vahrenkamp

Komplexe 5
der
Charakterisierung
6.
Гаb.

Komplex	Tricarbonyl (dicarbonyl cyclopenta- dienylwolfram) bis-u-(dimethylar- senido)[ieisen(Fe-W)	Farbe	S6hmp. (⁶ C)	Summenformel (Molmasse)		3	Ana Iyse H	e L	
2a	di carbonyl (cyclopentadienyl) ei sen	rotbraun	132-133	C21H22A52Fe207W (831.8)	Ber. Gef.	30.32 29.89	2.67 2.51	13.43 13.29	
22	tricarbonyl(cyclopentadienyl)- molybdän	rotbraun	170-173	C22H22A52FeM00gW (899.9)	Ber. Gef.	29.36 29.57	2.46 2.52	6.21 6.40	
24	tricarbonyl(cyclopentadienyl)- wolfram	schwarz- braun	193-197 (Zers)	CzaHzzAszFe0gWz (987.8)	Ber. Gef.	26.75 26.73	2.24 2.14	5.65 5.79	
26	carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen	rot	157-161 (Zers)	CaaHa1As2Fe206PW (879.9)	Ber. Gef.	31.40 32.16	3.55 3.52	12.69 13.09	
2f	dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom	rotbraun	152-153	Ca4Ha1As₂CrFe07PW (904.0)	Ber. Gef.	31.89 32.27	3.46 3.52	6.18 6.46	
53	dicarbonyl (cyclopentadienyl) (tri- methylphosphan)molybdän	rotbraun	166-169 (Zers)	C₂4H₃1As₂FeMo07PW (948.0)	Ber. Gef.	30.41 30.51	3.30 3.26	5.89 6.22	
<u>43</u>	dicarbonyl(cyclopentadienyl)(tri- methylphosphan)wolfram	rotbraun	190-192	Са4 ^Н з1Аѕ2Fe07PW2 (1035.9)	Ber. Gef.	27.82 27.63	3.02	5.39 5.27	
	Tricarbonylbis-u-(dimethylarsenido)	Charakterisi	erung der Ko	mplexe 6 und 8			e su l es		
Komplex	[] [tricarbonyl (cyclopenta- dienyl)wolfram]eisen	Farbe	.(0 ^C)	(Holmasse)		۲ ں	H	e Le	
<u>6a</u>	dicarbonyl (cyclopentadienyl)eisen	rotbraun	139-141 (Zers)	C22H22As2Fe20gW (859.8)	Ber. Gef.	30.73 31.00	2.58 2.47	12.99 12.78	
7 9	tricarbonyl (cyclopentadienyl) chrom	brombeer	133 (Zers)	C ₂₃ H22As2CrFeOgW (884.0)	Ber. Gef.	31.25 31.62	2.51 2.42	6.32 5.98	
66	tricarbonyl(cyclopentadienyl) molybdän	schwarz	138-141 (Zers)	C ₂₃ H22A52FeMo0 ₀ W (927.9)	Ber. Gef.	29.77 30.26	2.39 2.22	6.01 6.35	
<u>6</u> f	dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom	schwarz- braun	142-143	CzsHa1AszCrFeOgPW (932.0)	Ber. Gef.	32.22 32.48	3.35	5.95	
60	dicarbonyl(cyclopentadienyl)(tri- methylphosphan)molybdän	schwarz- rot	153-155 (Zers)	C ₂₅ H ₃₁ As ₂ FeMo0 ₆ PW (976.0)	Ber. Gef.	30.77 30.37	3.20	5.72 5.80	
<u>6</u> h	dicarbonyl (cyclopentadienyl) (tri- methylphosphan)wolfram	schwarz- braun	155-158 (Zers)	C ₂₅ H ₃₁ A52FeOgPW2 (1063.9)	Ber. Gef.	28.22 28.26	2.94 2.97	5.25 5.59	
Ś	[D]carbonyl(cyclopentadienyl)bis- p-(dimethylarsenido)(tricarbonyl- eisen)wolfram(f=wy]tricarbonyl (vcclonentadienyl)chromat	gelbbraun	188-189 (Zers)	C22H22A52CrFe0gW (855.9)	Ber. Gef.	30.87 31.00	2.59	6.52 6.69	

80 mg (19%) 6a, die zweite, hellrote Fraktion enthielt geringe Mengen von $[FeCp(CO)_2]_2$, die dritte, rote Fraktion lieferte 0.13 g (31%) 5a.

Bei der Charakterisierung der neuen Komplexe (Tab. 4-7) werden die Namen so angegeben, daß im Kopf der Tabelle jeweils der unveränderliche Namensteil steht und der dort durch eckige Klammern freigehaltene Platz mit dem in der Tabelle genannten veränderlichen Namensteil gefüllt werden muß (außer bei **8**).

Reaktivität von Metall-Metall-Bindungen

Literatur

- ¹⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 113, 2189 (1980), vorstehend.
- ²⁾ R. Müller und H. Vahrenkamp, J. Organomet. Chem. 170, C 25 (1979).
- ³⁾ M. Börner und H. Vahrenkamp, J. Chem. Res. 1977, S 74, M 0801.
- ⁴⁾ H. Beurich und H. Vahrenkamp, Angew. Chem. 90, 915 (1978); Angew. Chem., Int. Ed. Engl. 17, 863 (1978).
- ⁵⁾ F. Richter und H. Vahrenkamp, Angew. Chem. 91, 566 (1979); Angew. Chem., Int. Ed. Engl. 18, 531 (1979).
- ⁶⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 110, 1206 (1977).
- ⁷⁾ W. Malisch und M. Kuhn, Angew. Chem. 86, 51 (1974); Angew. Chem., Int. Ed. Engl. 13, 84 (1974).
- ⁸⁾ W. Malisch, H. Rössner, K. Keller und R. Janta, J. Organomet. Chem. 133, C 21 (1977); W. Malisch, Privatmitteilung.
- ⁹⁾ F. A. Cotton, Acc. Chem. Res. 2, 240 (1969).
- 10) R. Müller und H. Vahrenkamp, Chem. Ber. 110, 3910 (1977).
- ¹¹⁾ H. Vahrenkamp und E. Keller, Chem. Ber. 112, 1991 (1979).
- 12) K. Yasufuku und H. Yamazaki, Bull. Chem. Soc. Jpn. 46, 1502 (1973).
- 13) M. Börner und H. Vahrenkamp, Chem. Ber. 111, 2190 (1978).
- ¹⁴⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 112, 3390, 3773 (1979).
 ¹⁵⁾ Vgl. E. O. Fischer, W. Hafner und H. O. Stahl, Z. Anorg. Allg. Chem. 282, 47 (1955).
- ¹⁶ Vgl. A. Trenkle und H. Vahrenkamp, J. Organomet. Chem. 155, C 51 (1978).
- ¹⁷) M. Börner und H. Vahrenkamp, unveröffentlicht.

[349/79]